Comprehensive Meta Analysis Version 2 (Beta)

Preview Manual
Introduction

The program installation will create a shortcut labeled Version2 on your desktop and also under “All programs” on the Windows Start menu.

It will also install several data files for use with this guide. These files will be installed in the same directory as the program, which (by default) will be C:\Program Files\Comprehensive Meta Analysis Version 2

To uninstall the program use the Windows Control panel, select “Add or Remove Programs”, and remove “Comprehensive Meta Analysis Version 2”

This document includes the following sections.

1. Basic data entry and analysis
2. Multiple data entry formats
3. Working with moderator variables
4. Subgroups within studies
5. Multiple outcomes within studies
6. Importing data from other programs
7. Saving and loading files
8. Publication-quality graphics
Section 1. Basic data entry and analysis

This section shows how to set up a spreadsheet for data entry and run the basic analyses.
The tutorial

The program includes a tutorial which may be opened from the Help menu. The tutorial covers the same material that is explained on the following pages.
Overview

The program uses a spreadsheet for data entry, but requires the user to identify specific columns to hold the study names and the effect size data. This process is explained here.

Create a column for Study Names

Select **Insert... Column for... Study names.**

The program will insert a column for study names as shown below.

The program inserts this column.
Create columns for effect size data

Select Insert… Column for… Effect size data.

This will launch a wizard that allows the user to select the desired format (or formats).
The first screen in the wizard (above) offers an overview of the options for entering effect size data, as follows:

"If you have already computed the effect size (such as the standardized mean difference or the log odds ratio) for each study, you may enter this information directly.

"Or, you may provide summary data (such as the number of events or the means and standard deviations), and the program will compute the effect size automatically.

"Use this wizard to specify the type of data you plan to enter, and the program will create the required columns.

"The program allows you to enter effect size data in more than one format. You will create one set of effect size columns now, and may add additional sets at any time."
The second screen of the wizard is shown here, and allows the user to select the class of data entry types:

- Comparison of two groups, interventions, or exposures (includes correlations)
- Estimate of means, proportions, or rates in one group at one time-point
- Generic point estimates
- Generic point estimates, log scale

For the running example of the BCG data, select the first option.
Effect size wizard (Screen 3)

First, click in sequence on the two group icons opened here.

Choose format and then click Finish.

The third screen shows the list of formats arranged hierarchically. In the running example, drill down in the hierarchy to select the following.

- **Dichotomous (number of events)**
 - Unmatched groups, prospective (e.g., controlled trials, cohort studies)
 - Events and sample size in each group

At this point, the **Finish** button will be activated. Click on it to create the columns for data entry.
Modify data entry column names

The wizard will close and the program will automatically offer this dialog for modifying effect size format column names. If, for example, you elect to substitute “Treated” for “Group-A” and “Control” for “Group-B”, you will create column names such as “Treated events” and “Control events”.

The modifications made here will be applied not only to the format selected, but also to columns in any related format (in this case, in formats of the “cohort or prospective studies” type). The dialog gives name override suggestions consistent with the format type but will accept any user-entered value.
Enter effect size data

When the group names dialog closes, the spreadsheet looks like this. White columns are used for entering data. Yellow columns display the computed effect size. Note that the entry column names have been modified ("Treated" and "Control" in place of the defaults, "Group-A" and "Group-B").

In the white columns enter the “Number of Events” and “Total N” for the treated group (4, 123) and the control group (11, 139).

The program automatically computes the log odds ratio and standard error (-.939, .598) and the odds ratio (0.391) and displays these in the yellow columns.
View computational formulas

This dialog displays the formulas used to compute the effect size and, when pertinent, standard error, for a given cell's index. It also displays the formulas used to derive related indices. In this case it traces the computation of odds ratio as well as its related index, log odds ratio.

Note that actual numeric values are substituted for variable names at the bottom of the display, clarifying the steps which lead to the final results. (The formula views are currently implemented for most, but not all, effect size entry formats.)

You can view the formula for any effect size index displayed on the spreadsheet by clicking on the appropriate tab at the top of this dialog. Here there is only one tab, Odds ratio. (Clicking on the Data entry tab offers a view of one row's values and an alternate mode of data entry.)
Diagnosing data entry problems

When the data are not valid, the effect size results can’t be computed. To diagnose the problem, simply move the mouse over any of the cells highlighted in red. The related problem description displays in a pop-up.

Please note that the Data entry assistant dialog will soon be modified to display all data entry errors for a given row. This dialog can be launched by double-clicking on a row.
Customize effect size index display

By default the program will display one or two indices (in this case, odds ratio and log odds ratio), which are based on the format selected for data entry. However, the user can customize the screen to display other indices as well.

Right-click on the yellow columns to open the pop-up menu (above). Then click **Set primary index** or **Customize display** to launch the index dialog box shown below.
Open data set

Before proceeding to the analysis screen, the user would need to enter data for all studies.

As a time-saving device a copy of this data set has been included on the CD. To open this data set select File… Open and then drill down to the location of the data set.

By default, the data set will be in the directory C:\Program Files\Comprehensive Meta Analysis Version 2. The data set name is BCG.
Launch analysis module

Click View... Analysis.

Note: The BCG meta analysis data set is the basis for this and other examples. It will be altered at certain points for the purposes of the presentation.
Analysis

Set the computation model with these tabs.
Set the analysis display with the bottom tabs.

The primary index from the Data Entry module (in this case odds ratio) is used for the initial Analysis display. The columns labeled Statistics for each study include the odds ratio and 95% confidence interval for each study. The last row in the spreadsheet shows the summary data. Under the fixed effect model the point estimate is 0.647 (0.595, 0.702).

The same information is captured by the Forest plot at the center of the screen. This plot shows each study as a point estimate with its lower and upper limit, and provides a sense of the study-to-study dispersion.

This screen may be customized in many ways, including the following (see toolbar):

- **A Filter by** button allows the user to select which studies to include in the analysis, based on study name or moderator variables.
- **A Group by** button allows the user to run the analysis grouped by a moderator (if moderators are included in the data set), and to compare the treatment effect across groups.
- **A Sort by** button allows the user to sort the display by any variable(s). **(Not yet implemented).**
- A drop-down box is used to select the treatment effect index. In this example the program would allow the user to toggle between odds ratio, risk ratio, risk difference, and other indices of effect size.
- A drop-down box is used to set the confidence level (95% in this example).
• An icon on the toolbar toggles between the graphical presentation and the tabular one shown below, which provides additional detail on the statistics and tests of heterogeneity.
• Tabs at the bottom of the screen allow the user to select the computational model (in this example, fixed or random effects, or both).
• Tabs at the bottom of the screen also allow the user to select data views that include study residuals, study weights, analyses with one study removed, cumulative analyses, and others.
View summary statistics

A button on the toolbar (also accessible on the menu) allows you to toggle among three windows: Spreadsheet alone, table alone, or divided (as in this screen-shot).

The table provides more detail on the point estimate and heterogeneity.
View study weights

- On the tab at the bottom of the screen, select Study weights.
- On the tab just above that, select Both models.

The spreadsheet now includes two rows at the bottom – labeled Fixed and Random.

At the right, the program shows the weight assigned to each study under the fixed or random effect model. Compare, for example, the fixed effect and random effects weights for the “Madras, 1980” study.

In this display, the Standard error, Variance, Z-value, p-value columns and Events / Total block been hidden. To hide a column or block of columns, right-click on that column and use the pop-up menu.
View standardized residuals

Here, the user has clicked on **Residuals** on the bottom tab.

Note, once again, how the display clarifies the contrast in results between the fixed and random models.
View ‘One study removed’ results

In this view, each row displays not the results of a single study, but rather the summary values computed when that row’s study is removed from the meta analysis. For example, the values in the first row, “Aronson, 1948”, represent the summary computations for twelve studies, when “Aronson, 1948” is excluded.

Note that the Both models tab is not available in this display. The tab appears only when appropriate.

This view is in an early stage of development. It can take a long time to run, and will cause the program to crash when the analysis has been grouped by one of the population variables (the Group by function is discussed below).
View cumulative analysis

The Cumulative analysis option displays results accumulated over successive studies. That is, the second row presents a summary analysis comprising the first two studies (in this case, “Aronson, 1948” and “Ferguson & Simes, 1949”), the third row presents a summary analysis comprising the first three studies, and so on through the final row. When the data are sorted by year, this would show the conclusions that could have been obtained at any point in time with each new study’s appearance.

The Forest plot and the study weight block also display cumulative values.

This view is in an early stage of development. At the moment it can take a long time to run, and will cause the program to crash when the analysis has been grouped by one of the population variables (the Group by function is discussed below).

Note that the studies have been sorted (by year in this case) in order to make the display more meaningful.
This tab shows how data in each row are summed to yield totals, which are then used to compute the point estimates and standard errors.

This is intended both as a teaching tool and also to allow researchers to understand the precise formula being used. As development continues, the user will be allowed to open a box that shows the precise formula used for each computation, and how these values were inserted into that formula to yield the reported statistics.

Please note that this image comes from a prior program version. The current version includes the columns depicted here as well as many others added for development purposes which will ultimately be removed.
Filter by …

Click on the Filter by icon to launch this dialog. Here you can change the set of studies to include in the meta analysis. If the data set included subgroups or moderator variables, they would appear here as well.

Click on Apply or OK to apply the changes.
Some tools for customizing the analysis display

Click on the **Scale** option and select a setting in this dropdown to change the scale used in the Forest plot. The options for log scales appear when odds ratios, risk ratios, rate ratios, or hazard ratios are used as the effect size index. Otherwise, options for raw scales appear.

Click on the **Index** option and select a setting in this dropdown to use an alternate index for the meta analysis computations.
Click on the **Confidence level** option and select a setting in this dropdown to change the confidence level used in the computations and the Forest plot.
Section 2. Multiple data entry formats

If the effect size for all studies is in the same format (e.g., number of events and total N for treated and control groups, or the odds ratio and confidence interval) the user would create one set of columns for effect size data as described in the previous section.

In the event that some studies report the effect size in one format while others report it using another format, the user will need to create two (or more) sets of data entry columns. The options are explained in this section.

This section uses the “Strepokinase” example, which is patterned after a published meta analysis but includes fictional data.

For all studies in this meta analysis, patients who arrive at a hospital following a myocardial infarction are randomized to one of two groups: (A) standard treatment alone, or (B) standard treatment plus streptokinase.

Some studies report the number of events (deaths) and the total number of patients in each group. This data will be used to compute an odds ratio, with odds ratios less than one indicating that patients in the treated group were less likely to die.

Other studies report the odds ratio and the 95% confidence interval.

By default, data sets are copied to C:\Program Files\Comprehensive Meta Analysis Version 2.

The two datasets used in this section are StreptoMultiformat18 studies, which includes the 18 studies in the first format, and StreptoMultiformat22 studies, which includes all 22 studies.
Overview

The mechanism for entering effect size data in several formats is shown here. The spreadsheet includes a block of columns labeled ‘Treated Events, Treated Total N’, etc. And, a second block of columns labeled ‘Odds ratio, Lower limit’, etc.

For the first 18 studies the data are entered into the first block, and the second block is grayed out. For the next 4 studies the data are entered into the second block and the first block is grayed out. However, for all 22 studies the computed effect is displayed in the same columns (at the right). Since it is these columns which are used in the analysis, all studies can be included in the analysis without regard to the original format (with the caveat that the data provided allows us to compute the required effect size index).

- To create multiple effect size blocks, simply Insert… Columns for… Effect size data as many times as needed. Each time, the program will allow the user to select an additional format from the hierarchy.

- By default, the program shows only one data entry block at a time. If only one block is displayed, use the tabs at the bottom of the screen to switch between blocks.

- To view all the blocks (as above), right-click on the data entry column and use the pop-up menu.
Step-by-step instructions for multiple formats

Create the first block (for events and total N in each group) as described in the previous section, and enter data for the first 18 studies as shown here.
Create the second effect size entry block

Right-click in data entry columns and select Insert new data entry format.

To create the second block simply repeat the procedure (Insert… Column for… Effect size data). Or, right-click on the data entry columns to launch a pop-up menu and select Insert new data entry format.
Select second effect size entry format

You have selected Odds ratio and confidence limits
Click 'Finish' to create the columns

Note that the **Dichotomous (number of events)** book icon remains open from the selection of the first effect size entry format.

In this example we want to create a block of columns to enter the odds ratio and confidence interval. Drill down in the hierarchy to select the following:

- **Dichotomous (number of events)**
 - **Computed effect sizes**
 - **Odds ratio and confidence limits**

At this point, the **Finish** button will be activated. Click on it to create the columns for data entry.
Enter data for second effect size

Data is now entered in the second effect size block for the final four studies.

Effect size index results are automatically calculated and display in the yellow columns. Note that it is not necessary to enter both ‘Lower limit’ and ‘Upper limit’ values in this format. (If both are entered, the program will check to ensure that the values are consistent. For example, if the ‘Odds ratio’ is 1.000 and the ‘Lower limit’ is 0.500, the ‘Upper limit’ must be 2.000. Currently, the program allows a small margin for rounding error, and as development proceeds the user will be given control over this option).

Since there is now more than one format, the program has added a column to identify the format for each row. The formats, Cohort 2x2 (Events) and Odds ratio are inserted by the program automatically when the user enters data.

- Right-click on the data entry columns and select Show all data entry formats to modify the display. If you elect to Hide all data entry formats they can be re-displayed by right-clicking on the tab at the bottom of the screen.

- Right-click on the yellow columns and add “Risk ratio” as an index. As shown above, this ratio will display for the first 18 studies (since it can be computed from the data provided) but not for the last four.
For an analysis using odds ratios (as shown here), data from all studies would be available.

For an analysis using risk ratios, only data from the first 18 studies would be available, since the data from the last 4 studies cannot be used to compute a risk ratio.
Section 3. Working with moderator variables

The program allows you to create moderator variables which can then be used in the analysis.

Version 2 of the program will be able to work with categorical moderator variables only. Once such a variable is defined the user will be able to group by that variable. The program will also offer options for fixed effect, several mixed effect models, and a fully random effects model.

These options, still in development, are explained in this section.

By default, data sets are copied to C:\Program Files\Comprehensive Meta Analysis Version 2. The dataset used in this section is StreptoModerator.
Create the moderator column

The program allows you to compare the effect size in two groups of outcomes. For example, you may want to compare the effect size in studies using acute patients with the effect size in studies using chronic patients. In order to group the studies for such a comparison you must first set up a moderator variable column.

- Double-click on an unassigned column header to launch the column format dialog. The dialog allows you to select a column function, in this case Moderator, and to enter a variable name, in this case, 'Patient Type'.

- Specify that the variable data type is categorical.

- Click on OK to create the moderator column and to begin data entry.
Enter moderator values

The moderator values, either “Acute” or “Chronic”, are now entered for each study in the ‘Patient Type’ column. The toggle button circled above allows you to switch to dropdown data entry, so that you can enter “Acute” or “Chronic” by typing only the first letter of either word.
Select a grouping variable

Click on the **Group by** option in the toolbar to launch the ‘Group by’ dialog.

Select ‘Patient Type’ as the moderator.

In this example we will run an analysis within each patient level and another across all levels.
Run Group by... analysis

The pale yellow rows provide summaries at each level, “Acute” and “Chronic”. The bold yellow ‘Overall’ row provides a summary for both levels.
Select a computational model

Select View... Analysis to switch to the ‘Analysis’ screen.

Click on the Computational options option in the toolbar to launch the Computational options dialog.

The options selected here will determine the models to be used for calculating group and overall summary values.
View additional statistics by group

Click on the Show stats only toggle icon to display this window, showing additional statistics at each level and overall. The within-groups and between-groups heterogeneity values are also broken out. At the bottom is a brief explanation of the assumptions which underlie the selected random effects models.
Section 4. Subgroups within studies

In the main example summary data were recorded for the full sample in each study.

The program also allows the user to record data for subgroups within the study. For example, if there were reason to believe that the treatment effect varied as a function of gender, some (or all) studies might report the treatment effect separately for males and females.

In this case we would enter the data for each study on two rows – one for males and one for females.

In the analyses we would want to do some (or all) of the following:

- Using subgroup as the unit of analysis, run an analysis grouped by gender. This would report the treatment effect for each gender, and assess the impact of gender on the treatment effect. We could also run an overall analysis.

- Using subgroup as the unit of analysis, run the analysis for either gender alone.

- If it emerged that the treatment effect was comparable for males and females, the researcher might elect to use study as the unit of analysis. This would require having the program collapse the rows for male and female within each study, and impute the values for the full group.

The program offers all of these options, which are outlined in this section.

By default, data sets are copied to
C:\Program Files\Comprehensive Meta Analysis Version 2.
The dataset used in this section is StreptoSubGroups.
Create column for subgroups within study

Select Insert… Column for… Study names
Select Insert… Column for… Subgroups within studies

In this example the study name “Dewar” extends across two rows to accommodate the two subgroups. This is controlled by toggling the Merge icon, circled on the toolbar.
At the top of the dialog box, use check-marks to select which subgroups should be included in the analysis.

At the bottom of the dialog box, specify whether to use subgroup within study or study as the unit of analysis.

If subgroup is the unit of analysis, you may use the **Group by** button and run an analysis using gender as the moderator variable.
Use study as the unit of analysis

This analysis is run according to the selection: **Use study as the unit of analysis**.

Those studies with multiple subgroups display the term ‘Combined’ in the **Subgroups within study** column. Those studies that had initially been entered on one line as “Both” are displayed here as they had been entered, since there is no imputation required.
Section 5. Multiple outcomes within studies

In the initial example, we assumed that we needed to record one treatment effect for each study. However, there are situations where the user will want to record more than one treatment effect per study. These are outlined here.

- More than one comparison per study. Assume that some (or all) studies report the treatment effect for Control vs Treatment-A and also Control vs Treatment-B. We would want to record each treatment effect, and then use this information in the analysis.

- More than one outcome per study. Assume that some (or all) studies report the treatment effect for more than one dependent variable – for example, the impact of the treatment in preventing myocardial infarction and also its impact in preventing death. We may want to run one analysis for the first outcome and a separate analysis for the second.

- More than one time point. Assume that studies record the treatment effect at six months and also at one year. We would want to record both, and then run the analysis on one or the other.

This synopsis is meant only to introduce the topic of multiple, non-independent data points. The ability of the program to work with these will be much more extensive than alluded to here.

In this example we limit ourselves to the simplest case, where the user selects one item of information from each study. This example focuses on outcomes, but the same options are available for comparisons or time points.

A separate section in this document addresses the use of multiple subgroups within studies.

By default, data sets are copied to C:\Program Files\Comprehensive Meta Analysis Version 2. The dataset used in this section is StreptoOutcomes.
Create the outcome column

First, insert a column for Study names.
Then, insert a column for Outcome name.

Select Insert... Column for... Study names.
Select Insert... Column for... Outcome name.
Enter outcome values

In this example some studies contain both outcomes, some only one.
View analysis for one outcome

Note that only one outcome displays in the **Outcome** column. That is the only outcome selected in the dialog.

With the settings provided in the **Group by** dialog, you can also produce analyses which group results by outcome across multiple outcomes.
Section 6. Importing data from other programs

The data entry screen is a spreadsheet, and the user may cut and paste data from most programs, such as Excel, STATA, or SPSS, which are able to display the data in spreadsheet form.

To import data

- Switch to the other program and display the data in the Grid View.
- Copy the data to the Windows clipboard (CTRL-C)
- Switch to this program and paste the data into the spreadsheet (CTRL-V)

One step remains – the user must identify the column with the study names, and the columns with the effect size data. Instructions follow.

By default, data sets are copied to
C:\Program Files\Comprehensive Meta Analysis Version 2.

The Excel spreadsheet is BCG.xls.
The CMA data file is BCG.cma.
Import data from Excel

The program allows you to import data already stored on an Excel spreadsheet. It provides simple procedures to assign the imported data to population and effect size entry columns in the data entry module.

The Excel spreadsheet above contains the BCG data used in an earlier sequence.

Copy the Excel data into a buffer (using ‘Ctrl-C’, for instance).

(The same approach will work with SPSS, STATA, and most programs that can display the data in a grid).
Paste data into the data entry module

Switch to Comprehensive Meta Analysis and use ‘Ctrl-V’ to paste the data into the spreadsheet.
Assign column header titles

In this example the top row of the data file contains titles ("Study", etc). Click on Format and select Use first row as labels.
Assign a ‘Study name’ column

Double-click on the header for the “Study” column and identify the function of the column as ‘Study name’.

Note: This is required even though the column is named “Study”.
Identify the effect size columns

Select **Identify... Column for... Effect size data**.

Be sure to use **Identify** to identify the existing columns, rather than **Insert**, which would create new columns.

The program will launch the effect size entry wizard. The function is identical to that for creating a new spreadsheet, until the last panel of the wizard. There, instead of creating the columns, the program will ask you to identify their location.
Select effect size entry format

Choose format and click Next.

You have selected Events and sample size in each group. Click ‘Next’ to identify the columns that contain this data.

The third screen shows the list of formats arranged hierarchically. In the running example, drill down in the hierarchy to select the following:

- **Dichotomous (number of vents)**
 - Unmatched groups, prospective (e.g., controlled trials, cohort studies)
 - Events and sample size in each group

At this point, the Next button will be activated. Click on it to proceed to the final screen.
Assign effect size entry columns

Select a column title from the dropdown in order to assign that column’s data to the corresponding effect size entry column.

Then, click **Finish**.
All imported columns assigned

The study names and effect size entry columns are now appropriately assigned. The effect size results are automatically calculated and display in the yellow columns.

At this point, the program behaves exactly as if the spreadsheet had been created from scratch.
Section 7. Saving and loading files

This section shows how to save and reload your data sets.
Save the data set

In order to save your data for future use, click on the file save icon to launch the save dialog. Here you can enter a file name for the data set.

The file type is `.cma`.
Open and load the saved data set

Click on **File** and **Open** to launch the file open dialog.

Navigate to the desired directory. All CMA files will display.

Use this file open dialog to locate, select and download previously saved data sets.
Section 8. Publication-quality graphics

The program enables you to create and easily format publication-quality graphics. The graphics module will allow you to print the graphics, export them to common presentation formats, such as Word or PowerPoint, or save them in formats such as “PDF” or “WMF”.

Please note that in this release only the exports to Word and PowerPoint and the save as “WMF file” are operational.
Modify the analysis display for graphics presentation.
Launch graphics module

Click on File... Print or export as picture.
Format graphics display

The graphic first displays in a default mode. Right-clicking on any segment of the display will drop down a list of context-sensitive formatting options. Clicking on the icon circled on the toolbar will restore the image to its default mode.

Meta Analysis

<table>
<thead>
<tr>
<th>Study name</th>
<th>Odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aronson, 1949</td>
<td>0.391</td>
<td>0.121</td>
<td>1.262</td>
</tr>
<tr>
<td>Ferguson & Simes, 1949</td>
<td>0.199</td>
<td>0.077</td>
<td>0.462</td>
</tr>
<tr>
<td>Stein & Aronson, 1953</td>
<td>0.384</td>
<td>0.316</td>
<td>0.465</td>
</tr>
<tr>
<td>Rosenthal, 1960</td>
<td>0.250</td>
<td>0.069</td>
<td>0.909</td>
</tr>
<tr>
<td>Rosenthal, 1961</td>
<td>0.246</td>
<td>0.144</td>
<td>0.422</td>
</tr>
<tr>
<td>Conteze & Barjak, 1960</td>
<td>0.624</td>
<td>0.381</td>
<td>0.986</td>
</tr>
<tr>
<td>Cornstock & Webster, 1969</td>
<td>1.663</td>
<td>0.373</td>
<td>6.549</td>
</tr>
<tr>
<td>Frimodt-Moller, 1973</td>
<td>0.603</td>
<td>0.514</td>
<td>1.296</td>
</tr>
<tr>
<td>Vandervae, 1973</td>
<td>0.195</td>
<td>0.077</td>
<td>0.487</td>
</tr>
<tr>
<td>Cornstock, 1974</td>
<td>0.711</td>
<td>0.571</td>
<td>0.985</td>
</tr>
<tr>
<td>Cornstock, 1975</td>
<td>0.983</td>
<td>0.982</td>
<td>1.961</td>
</tr>
<tr>
<td>Hart & Sutherland, 1977</td>
<td>0.230</td>
<td>0.176</td>
<td>0.309</td>
</tr>
<tr>
<td>Madras, 1800</td>
<td>1.012</td>
<td>0.884</td>
<td>1.146</td>
</tr>
<tr>
<td></td>
<td>0.647</td>
<td>0.585</td>
<td>0.702</td>
</tr>
</tbody>
</table>

Fixed effect model
Select color scheme for presentation format

Click on Color mode to select an appropriate color scheme, in this case, the scheme for slides.

The color scheme can be further modified by clicking on the Colors option, circled above. Right-clicking on the graphics display will also offer context-sensitive color editing (among other formatting options).
Format text and layout

Click on the layout icon to launch the Graphics options dialog with its additional formatting and editing features.

In the Graphics options dialog you can modify text, page layout, spacing etc.

Export to file

Click on File to select an option for printing, copying, exporting or saving the graphic display.

In this case, the graphics image has been exported to PowerPoint which opens automatically and displays the converted graphic.