Introduction to Meta-Analysis

Michael Borenstein
Biostat, Inc, New Jersey, USA.

Larry V. Hedges
Northwestern University, Evanston, USA.

Julian P.T. Higgins
MRC, Cambridge, UK.

Hannah R. Rothstein
Baruch College, New York, USA.

WILEY
A John Wiley and Sons, Ltd., Publication
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Web site</td>
<td>xxix</td>
</tr>
</tbody>
</table>

PART 1: INTRODUCTION

1 **HOW A META-ANALYSIS WORKS**
 - Introduction | 3 |
 - Individual studies | 3 |
 - The summary effect | 5 |
 - Heterogeneity of effect sizes | 6 |
 - Summary points | 7 |

2 **WHY PERFORM A META-ANALYSIS**
 - Introduction | 9 |
 - The streptokinase meta-analysis | 10 |
 - Statistical significance | 11 |
 - Clinical importance of the effect | 12 |
 - Consistency of effects | 12 |
 - Summary points | 14 |

PART 2: EFFECT SIZE AND PRECISION

3 **OVERVIEW**
 - Treatment effects and effect sizes | 17 |
 - Parameters and estimates | 18 |
 - Outline of effect size computations | 19 |

4 **EFFECT SIZES BASED ON MEANS**
 - Introduction | 21 |
 - Raw (unstandardized) mean difference D | 21 |
 - Standardized mean difference, d and g | 25 |
 - Response ratios | 30 |
 - Summary points | 32 |
5 EFFECT SIZES BASED ON BINARY DATA (2 × 2 TABLES) 33
 Introduction 33
 Risk ratio 34
 Odds ratio 36
 Risk difference 37
 Choosing an effect size index 38
 Summary points 39

6 EFFECT SIZES BASED ON CORRELATIONS 41
 Introduction 41
 Computing r 41
 Other approaches 43
 Summary points 43

7 CONVERTING AMONG EFFECT SIZES 45
 Introduction 45
 Converting from the log odds ratio to d 47
 Converting from d to the log odds ratio 47
 Converting from r to d 48
 Converting from d to r 48
 Summary points 49

8 FACTORS THAT AFFECT PRECISION 51
 Introduction 51
 Factors that affect precision 52
 Sample size 52
 Study design 53
 Summary points 55

9 CONCLUDING REMARKS 57

PART 3: FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS

10 OVERVIEW 61
 Introduction 61
 Nomenclature 62

11 FIXED-EFFECT MODEL 63
 Introduction 63
 The true effect size 63
 Impact of sampling error 63
12 RANDOM-EFFECTS MODEL 69
Introduction	69
The true effect sizes	69
Impact of sampling error	70
Performing a random-effects meta-analysis	72
Summary points	74

13 FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS 77
Introduction	77
Definition of a summary effect	77
Estimating the summary effect	78
Extreme effect size in a large study or a small study	79
Confidence interval	80
The null hypothesis	83
Which model should we use?	83
Model should not be based on the test for heterogeneity	84
Concluding remarks	85
Summary points	85

14 WORKED EXAMPLES (PART 1) 87
Introduction	87
Worked example for continuous data (Part 1)	87
Worked example for binary data (Part 1)	92
Worked example for correlational data (Part 1)	97
Summary points	102

PART 4: HETEROGENEITY 105

15 OVERVIEW 105
Introduction	105
Nomenclature	106
Worked examples	106

16 IDENTIFYING AND QUANTIFYING HETEROGENEITY 107
Introduction	107
Isolating the variation in true effects	107
Computing Q	109
Estimating τ^2	114
The I^2 statistic	117
Comparing the measures of heterogeneity

- Confidence intervals for τ^2
- Confidence intervals (or uncertainty intervals) for I^2
- Summary points

Prediction Intervals

- Introduction
- Prediction intervals in primary studies
- Prediction intervals in meta-analysis
- Confidence intervals and prediction intervals
- Comparing the confidence interval with the prediction interval
- Summary points

Worked Examples (Part 2)

- Introduction
- Worked example for continuous data (Part 2)
- Worked example for binary data (Part 2)
- Worked example for correlational data (Part 2)
- Summary points

Subgroup Analyses

- Introduction
- Fixed-effect model within subgroups
- Computational models
- Random effects with separate estimates of τ^2
- Random effects with pooled estimate of τ^2
- The proportion of variance explained
- Mixed-effects model
- Obtaining an overall effect in the presence of subgroups
- Summary points

Meta-Regression

- Introduction
- Fixed-effect model
- Fixed or random effects for unexplained heterogeneity
- Random-effects model
- Summary points

Notes on Subgroup Analyses and Meta-Regression

- Introduction
- Computational model
- Multiple comparisons
- Software
- Analyses of subgroups and regression analyses are observational
PART 5: COMPLEX DATA STRUCTURES

22 OVERVIEW

23 INDEPENDENT SUBGROUPS WITHIN A STUDY
 Introduction
 Combining across subgroups
 Comparing subgroups
 Summary points

24 MULTIPLE OUTCOMES OR TIME-POINTS WITHIN A STUDY
 Introduction
 Combining across outcomes or time-points
 Comparing outcomes or time-points within a study
 Summary points

25 MULTIPLE COMPARISONS WITHIN A STUDY
 Introduction
 Combining across multiple comparisons within a study
 Differences between treatments
 Summary points

26 NOTES ON COMPLEX DATA STRUCTURES
 Introduction
 Summary effect
 Differences in effect

PART 6: OTHER ISSUES

27 OVERVIEW

28 VOTE COUNTING – A NEW NAME FOR AN OLD PROBLEM
 Introduction
 Why vote counting is wrong
 Vote counting is a pervasive problem
 Summary points

29 POWER ANALYSIS FOR META-ANALYSIS
 Introduction
 A conceptual approach
 In context
 When to use power analysis
Part 7: Issues Related to Effect Size

30 Publication Bias

- **Introduction**
- **The problem of missing studies**
- **Methods for addressing bias**
- **Illustrative example**
- **The model**
- **Getting a sense of the data**
- **Is there evidence of any bias?**
- **Is the entire effect an artifact of bias?**
- **How much of an impact might the bias have?**
- **Summary of the findings for the illustrative example**
- **Some important caveats**
- **Small-study effects**
- **Concluding remarks**
- **Summary points**

31 Overview

- **Introduction**
- **Relationship between p-values and effect sizes**
- **The distinction is important**
- **The p-value is often misinterpreted**
- **Narrative reviews vs. meta-analyses**
- **Summary points**

32 Effect Sizes Rather Than p-Values

- **Introduction**
- **Relationship between p-values and effect sizes**
- **The distinction is important**
- **The p-value is often misinterpreted**
- **Narrative reviews vs. meta-analyses**
- **Summary points**

33 Simpson’s Paradox

- **Introduction**
- **Circumcision and risk of HIV infection**
- **An example of the paradox**
- **Summary points**

34 Generality of the Basic Inverse-Variance Method

- **Introduction**
- **Other effect sizes**
- **Other methods for estimating effect sizes**
- **Individual participant data meta-analyses**
PART 8: FURTHER METHODS

35 OVERVIEW

36 META-ANALYSIS METHODS BASED ON DIRECTION AND \(p \)-VALUES

- Introduction
- Vote counting
- The sign test
- Combining \(p \)-values
- Summary points

37 FURTHER METHODS FOR DICHOTOMOUS DATA

- Introduction
- Mantel-Haenszel method
- One-step (Peto) formula for odds ratio
- Summary points

38 PSYCHOMETRIC META-ANALYSIS

- Introduction
- The attenuating effects of artifacts
- Meta-analysis methods
- Example of psychometric meta-analysis
- Comparison of artifact correction with meta-regression
- Sources of information about artifact values
- How heterogeneity is assessed
- Reporting in psychometric meta-analysis
- Concluding remarks
- Summary points

PART 9: META-ANALYSIS IN CONTEXT

39 OVERVIEW

40 WHEN DOES IT MAKE SENSE TO PERFORM A META-ANALYSIS?

- Introduction
- Are the studies similar enough to combine?
- Can I combine studies with different designs?
- How many studies are enough to carry out a meta-analysis?
- Summary points

41 REPORTING THE RESULTS OF A META-ANALYSIS

- Introduction
- The computational model
Contents

42 CUMULATIVE META-ANALYSIS 371

Introduction 371
Why perform a cumulative meta-analysis? 373
Summary points 376

43 CRITICISMS OF META-ANALYSIS 377

Introduction 377
One number cannot summarize a research field 378
The file drawer problem invalidates meta-analysis 378
Mixing apples and oranges 379
Garbage in, garbage out 380
Important studies are ignored 381
Meta-analysis can disagree with randomized trials 381
Meta-analyses are performed poorly 384
Is a narrative review better? 385
Concluding remarks 386
Summary points 386

PART 10: RESOURCES AND SOFTWARE

44 SOFTWARE 391

Introduction 391
The software 392
Three examples of meta-analysis software 393
Comprehensive Meta-Analysis (CMA) 2.0 395
RevMan 5.0 398
Stata macros with Stata 10.0 400
Summary points 403

45 BOOKS, WEB SITES AND PROFESSIONAL ORGANIZATIONS 405

Books on systematic review methods 405
Books on meta-analysis 405
Web sites 406

REFERENCES 409
INDEX 415